If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^2n+1/125=5^4
We move all terms to the left:
5^2n+1/125-(5^4)=0
We add all the numbers together, and all the variables
5^2n-625+1/125=0
We multiply all the terms by the denominator
5^2n*125+1-625*125=0
We add all the numbers together, and all the variables
5^2n*125-78124=0
Wy multiply elements
625n^2-78124=0
a = 625; b = 0; c = -78124;
Δ = b2-4ac
Δ = 02-4·625·(-78124)
Δ = 195310000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{195310000}=\sqrt{10000*19531}=\sqrt{10000}*\sqrt{19531}=100\sqrt{19531}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{19531}}{2*625}=\frac{0-100\sqrt{19531}}{1250} =-\frac{100\sqrt{19531}}{1250} =-\frac{2\sqrt{19531}}{25} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{19531}}{2*625}=\frac{0+100\sqrt{19531}}{1250} =\frac{100\sqrt{19531}}{1250} =\frac{2\sqrt{19531}}{25} $
| 10x^2-2200x+100000=0 | | 3/4w=-13/1/2 | | 163+c+c+20+3c-39=360 | | 6x-3=-13+x | | -151=-3x+5(6x+9) | | 25=11r | | 2x/3=x/5-1/3 | | 9.5w=-171 | | x-10/9=-9/4 | | 176x+128=182x+104 | | 8p+4=44 | | -4w+26=-82 | | 12=3v+3v | | 4x-3x+7=-4 | | 6n+8=6n+8 | | 3(2x-4)+5x=8x+3 | | -5t^2+24t+7=0 | | 3/4z–1/4z+1=2/4z+1 | | 0.75(16w-40)=2w-10 | | 22=3t+10 | | 2x-3/6+7x+2/4=5 | | 4x+5=1/3x-8 | | 0.5(10y-20)=20 | | (3n•3^2)^4=3^28 | | w-28=11 | | 3/2x+1/5=7/3X-1/2 | | 5y-3=4y-2y | | ½(10y-20)=20 | | 4|4x-5|-8=-6 | | 13=1/3x-4x | | -3(4x+7)=-129 | | 2x/6+7x/4=5 |